On the Nonrepresentability of Functions of Several Variables in Quadratures∗
نویسنده
چکیده
The paper completes the construction of a multidimensional topological version of differential Galois theory. We construct a rich class of germs of functions of several variables which is closed under superpositions and other natural operations. The main theorem describes the behavior of the monodromy groups of such germs under the natural operations. As a result, we obtain topological obstructions to the representability of functions in quadratures, which give the strongest known statements about unsolvability of equations in closed form.
منابع مشابه
Some inequalities in connection to relative orders of entire functions of several complex variables
Let f, g and h be all entire functions of several complex variables. In this paper we would like to establish some inequalities on the basis of relative order and relative lower order of f with respect to g when the relative orders and relative lower orders of both f and g with respect to h are given.
متن کاملApproximately generalized additive functions in several variables
The goal of this paper is to investigate the solutionand stability in random normed spaces, in non--Archimedean spacesand also in $p$--Banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
متن کاملApproximately generalized additive functions in several variables via fixed point method
In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملOn the Ratio of Rice Random Variables
The ratio of independent random variables arises in many applied problems. In this article, the distribution of the ratio X/Y is studied, when X and Y are independent Rice random variables. Ratios of such random variable have extensive applications in the analysis of noises of communication systems. The exact forms of probability density function (PDF), cumulative distribution function (CDF) a...
متن کامل